Once-Through Cooling Alternatives &

Potential Measures to Help Minimize Impingement and Entrainment Impacts

Rick York
California Energy Commission

Cooling Alternative - Dry Cooling -

- Completely eliminates the need for cooling water
- Eight operating dry cooled facilities in California
- Two largest were licensed by Energy Commission - Sutter Power Plant (540 MW) and Crockett (240 MW, on delta shoreline)
- Otay Mesa Project also dry cooled under construction (inland San Diego County)
- Dry cooling facility with wet/dry hybrid system involving spray enhancement and/or cooling towers can help on hottest days

Dry Cooling Costs & Concerns

- Concerns include higher capital and operating costs compared to recirculating cooling (cooling towers), large size, increased noise, space needs and visual impacts
- Capacity losses are based upon condenser design and size - the larger the condenser, the larger the capital and operating costs, but the lower the capacity losses
- Even with higher costs and capacity losses, projects can be competitive

Cooling Alternative - Cooling Towers -

- Recirculating cooling with cooling towers can substantially reduce or eliminate the need for seawater for cooling by up to 95%
- Water options: seawater, wastewater effluent, other water sources unsuitable for municipal or agricultural uses

Cooling Towers Costs and Concerns

- Smaller capital cost than dry cooling, but can cost more than once-through cooling and there are efficiency losses and significant amount of water is evaporated
- May be more expensive than once-through cooling (no cost for water), but cooling towers are feasible since majority of inland power plants employ this cooling method
- Other concerns include particulate matter (air quality), visible plume and blowdown disposal

Alternative Cooling Water Supply

- Once-through cooling with wastewater effluent can eliminate the need for ocean water and entrainment and impingement impacts
- Wastewater cooling was proposed for El Segundo Power Project - Hyperion Wastewater Treatment Plant
- Advantages/disadvantages depend upon local conditions, proximity to water supply, water owner willingness to provide water

Employing a power plant cooling strategy that eliminates the need for once-through cooling is obviously preferred, however there are potential measures that may help lessen impingement and entrainment impacts

- Habitat Restoration/Creation -

- Implemented for the Moss Landing Power Plant project (2002) - \$7 million provided to Elkhorn Slough Foundation
- Current legal challenge in federal court current regulations allows for habitat restoration under new 316(b) regulations for NPDES permit renewal process
- Habitat restoration/creation OK in California for CEQA analyses/mitigation

Flow Reduction

- Repowering -

- Repowering combined-cycle combustion technology uses less water per kW/hr than a typical steam turbine power plant
 - ➤ Moss Landing Units 6 & 7 1,478 MW capacity requires 600,000 gallons/minute, while new combined cycle Units 1 & 2 are capable of 1,060 MW, but only require 250,000 gallons/minute

Flow Reduction - Variable Speed Pumps -

- Reduce cooling water intake flows when generating load reduced
- Amount of reduction depends on many variables such as capacity factor, number of pumps available, pump volume and thermal discharge limitations
- Seasonal reductions of cooling water intake Delta Dispatch system for Pittsburg and Contra Costa power plants has been implemented to protect larval striped bass and utilizes variable speed pumps
- Pittsburg cost for variable speed pumps = \$6.7 million
- Flow reduction techniques can reduce entrainment and impingement impacts

Other Potential Approaches To Help Lessen Impingement and Entrainment

- Location Options: intakes in less sensitive environments (offshore in deep water, not in bay or estuary) may be preferable, however could be just trading one problem for another . . .
- Design/Technology Options some work and some don't
 - > Velocity Cap
 - > Traveling Screens & Fish Return Systems
 - > Cylindrical Wedgewire Screens
 - Aquatic Filter Barriers
 - > Behavioral Barriers

Deep Water Intake Velocity Cap

- Shown to reduce impingement 80 -90% at Huntington Beach
- Common on California power plants with a deep water intake(s)
- Does <u>not</u> reduce entrainment

Water flows horizontally - fish detect horizontal water movement and avoid

Intake Traveling Screens

- Often located in forebay adjacent to power plant, not at other end of intake
- Standard equipment in California
- Intended to exclude debris but often impinges fish, fish eggs, larvae
- Addition of finer mesh screens and fish return system can reduce impingement impacts and reduce entrainment and allow for easier escape for impinged fish
- Intake flow velocity of 0.5 feet/second (fps) or less through the screen meets impingement performance standard under new Phase II regulations

Traveling Screens & Fish Return Systems

- Fish Return System -San Onofre - \$200 million
- Fish return system
 with traveling screens
 and fish baskets =
 Ristroph screen
- Does <u>not</u> address entrainment impacts

Cylindrical Wedgewire Screens

- EPA Best Technology
 Available, but only for freshwater
 river or stream
- Limited application only deployed in eastern US, none in coastal California
- Concerns: high cost, uncertainty about saltwater deployment
- Addresses impingement <u>and</u> entrainment

Aquatic Filter Barrier

- Gunderboom Inc. Marine Life Exclusion System
 - May address impingement and entrainment, however EPA considers experimental only
 - Considered for Contra Costa Power Plant, but determined infeasible
 - Very limited deployment in eastern US
 - Fouling, stability, & high costs are significant concerns
 - Open ocean deployment feasibility study anticipated (El Segundo Power Project)

Other Potential Ways to Minimize Impingement Impacts That Have Had Limited Success

- Behavioral Barriers -
 - Sound devices pneumatic 'popper', loud music
 - Lights mercury vapor lights
 - · Bubble curtain
- Only of limited success often species specific and none are currently used

Costs of Alternative Cooling and Potential Impact Minimization Technologies (some numbers from Taft and Cook 2005)

Technology	Capital Cost	O. & M. per year	Eliminates or minimizes impingement & entrainment impacts?
Cooling Towers	\$10 - 12 million	\$2 million	Eliminates impacts if alternative cooling water used; minimizes if ocean water used
Variable Speed Pumps	\$6 million (Pittsburg)	variable	Minimizes impacts
Aquatic Filter Barrier	\$30 million	\$2.3 million	Uncertain, experimental
Behavioral Barriers	\$2.6 million	\$180,000	Limited successes, species specific
Coarse mesh Ristroph screen	\$6.8 million	\$546,000	Helps lessen impingement, but not entrainment
Fine mesh Ristroph screen	\$10.9 million	\$609,000	Helps lessen impingement, but not entrainment
Fixed panel screen	\$3.8 million	\$251,000	Helps lessen impingement, but not entrainment
Narrow slot wedgewire screen	\$25.2 million	\$640,000	May significantly reduce impingement and entrainment, of limited use
Wide slot wedgewire	\$2.6 million	\$163,000	Minimizes impingement and entrainment
Screen Velocity cap	\$8.6 million	\$42,000	Minimizes impingement only

Summary

- Alternative cooling methods can greatly reduce or eliminate impingement and entrainment impacts, however there are increased costs and concerns
- Cooling alternatives are being used and are feasible
- Flow reduction can be an effective way to reduce impingement and entrainment impacts
- Various other devices have been tried, but few have proven to be feasible and/or effective
- Habitat compensation/restoration is a mitigation option